Gap between Actual and Expected Time Allocation to Academic Activities and its Impact on Undergraduate Academic Performance

Felly Chiteng Kot
Nazarbayev University, Kazakhstan

π
 Study Purpose

, Examine student time allocation to academic activities within the context of ECTS and Carnegie standards.

π Research Questions

, To what extent does the amount of time students allocate to academic activities deviate from academic credit standards (ECTS and Carnegie)?
, How does time allocation gap (TAG) impact undergraduate academic performance?

$\pi \quad$ Why Time Allocation Matters:

> key input in knowledge acquisition and skills development (Babcock \& Marks 2011; Stinebrickner \& Stinebrickner 2008)
, "key indicator of student engagement" in academic activities (Baik, Naylor, \& Arkoudis 2015)
> Important caveat: Time is not a measure of learning (Harris 2002, Shedd 2003)

Number of Hours Allocated to Academic Activities per Week

Country	Class Attendance	Out-of-class Study Time	Sources
USA	$15-16$ hours	$12-15$ hours	Brint \& Cantwell (2010); McCormick (2011); Arum \& Roksa (2011) Babcock \& Marks (2011); Ribera et al. (2013)
Germany	18.9 hours	17.3 hours	Grave (2010, 2011)
UK	13.5 hours	14.3 hours	Neves \& Hillman (2016)
Australia	15 hours	$17-18$ hours	James et al (2010); Baik et al. (2015)
China	$?$	13.4 hours	Guo (2014)

Impact of Time Allocation On Academic Performance and Outcomes

Context	Study	Impact of class attendance time	Impact of Self- study time	Impact of total time invested
USA	 Stinebrickner (2008)		Positive	
	Brint \& Cantwell (2010)			Positive
	Arum \& Roksa (2011)		Positive	
	Babcock \& Marks, $(2010,2011)$		Positive	

Legend: An empty cell means that the study did not focus on that particular aspect of time allocation.

Impact of Time Allocation On Academic Performance and Outcomes

Context	Study	Impact of class attendance time	Impact of Self- study time	Impact of total time invested
Spain	Dolton et al. (2003)	Positive	Positive	
	Andrietti \& Belasco (2015)	None	Positive	
Nine European countries	Meng \& Heijke (2005)	Positive	Positive	
Germany	Grave (2010, 2011)	Positive	Positive	
Italy	Bratti \& Staffolani (2013	Positive	Positive	
Belgium	Masui et al. (2014)		Positive	
China	Guo (2014)		Positive	

Legend: An empty cell means that the study did not focus on that particular aspect of time allocation.

Study Context

Nazarbayev University:

- Elite public research university established in 2010, in Astana, to be a model for higher education reform in Kazakhstan
- Academic programs created through unique strategic partnerships with top universities in the US, UK, and Singapore
- Use of English as medium of instruction
- About 85\% of undergraduate students go through a yearlong preparation program

Data Collection

Sources:

\star Student surveys (spring semesters 2016-2018)

* Administrative records

Population of Interest:

\& $1^{\text {st. }} \& 4^{\text {th }}$-year undergraduate students
Data Source Data Collected

Student Surveys:

Registrar's Office:

Admissions
Department

- Self-confidence
- Self-esteem
- Term study field
- Term GPA (0-4 scale)
- Number of hours preparing for class
- Number of classes missed
- Frequency of academic behaviors,
- Level of difficulty encountered
- Stress level experienced
- Dependency on others
- Term credit load (ECTS/Carnegie)
- Course enrollment records
- Demographic characteristics
- Secondary school type attended
- Secondary school GPA
- Entry-level English test scores
- Admission type
- Admission year

Study Sample

2,232
first- and fourth-year
undergraduate students who participated in surveys in spring semesters 2016-2018

Response rates:

\& First-year students: 57\%

* Graduating students: 71\%

Student Distribution by Field/Year

 \square First Year \quad Fourth Year

Time Allocation Gap (TAG) Measure

$\mathrm{TAG}=\frac{\text { Expected Time }- \text { Actual Time }}{\text { Expected Time }} * 100$

Where:

- Expected time = Total number of weekly hours student was expected to allocate to academic activities given his/her credit load, and based on:
- ECTS standards: 1 ECTS = 25 hours workload (minimum) over course duration
- Carnegie standards: 1 Credit = 3 hours of workload per week
, Actual Time = Number of hours of class attendance (adjusted for absenteeism) + number of hours of out-of-class study per week

Time Allocation Gap (TAG) Study Design

Treatment Group
Comparison Groups

Analytical Approach

Descriptive Results: Average ECTS TAG (in \%)

Students allocated 35\% less time to academic activities than expected under ECTS standards. Students in the bottom quartile allocated 7% less time and those in the top quartile 60\% less time to academic activities than expected.
60.0\%

Overall

Descriptive Results:

Average Carnegie Time Allocation Gap (in \%)

Students allocated 28\% less time to academic activities than expected under Carnegie standards. Students in the bottom quartile allocated 3% more and those in the top quartile 56% less time to academic activities than expected.

Results of Propensity Score Matching: Predictors with a Standardized Difference >20\%

ECTS MODEL

Before matching: 38.6\%

After matching: 0\%

CARNEGIE MODEL

Before matching: 30\%

After matching: 0\%

Results of Propensity Score Matching: Covariate Balance Example

Treatment and control groups differed substantially in the distribution of propensity scores before matching. After matching, however, the two distributions were very similar.

Raw Treated

Raw Control

Matched Treated

Matched Control

Post-Matching Results: Finding from Regression Analysis

, Time allocation gap had an impact semester GPA.
, Finding consistent under ECTS and Carnegie standards and for both first-year students and graduating students.

Average Treatment Effect on the Treated (ATT)

ATT: For students in the treatment group, what was the GPA gain associated with being in the $1^{\text {st }}$ rather than $2^{\text {nd }}, 3^{\text {rd }}$ or $4^{\text {th }}$ quartile of time allocation gap ?

Time allocation Gap (TAG) Quartiles	First Year Students		Fourth Year Students		
Treatment Group	Comparison Group	ECTS	Carnegie	ECTS	Carnegie
1st quartile	2nd quartile	0.07	0.07	0.05	0.07
1st quartile	3rd quartile	$0.20^{* * *}$	$0.22^{* * *}$	$0.14^{* *}$	$0.15^{* *}$
1st quartile	4th quartile	$0.24^{* * *}$	$0.27^{* * *}$	$0.18^{* * *}$	$0.23^{* * *}$
${ }^{* * *} \mathrm{p}<0.001 ;{ }^{* *} \mathrm{p}<0.011^{*} \mathrm{p}<0.05$					

Average Treatment Effect on the Untreated (ATU)

ATU: What would be the GPA gain for students in the comparison group (2nd $3^{\text {rd }}$, or $4^{\text {th }}$ quartile of time allocation gap), if these students had actually been in the treatment group ($1^{\text {st }}$ quartile of time allocation gap)?

Time allocation Gap (TAG) Quartiles	First Year Students		Fourth Year Students		
Treatment Group Comparison Group	ECTS	Carnegie	ECTS	Carnegie	
1st quartile	2nd quartile	0.07	0.07	0.05	0.07
1st quartile	3rd quartile	$0.19^{* * *}$	$0.23^{* * *}$	$0.14^{* *}$	$0.15^{* *}$
1st quartile	4th quartile	$0.24^{* * *}$	$0.26^{* * *}$	$0.19^{* * *}$	$0.23^{* * *}$

${ }^{* * *} \mathrm{p}<0.001 ;{ }^{* *} \mathrm{p}<0.01$; $^{*} \mathrm{p}<0.05$

Adjusted Term GPA for First-Year Students

Adjusted term GPA was higher for first-year students in the first quartile (Q1) of ECTS time allocation gap compared to students with similar characteristics who were in the third (Q3) or fourth (Q4) quartile.

```
Q1 (Treatment) vs. Q2 (Control)

\section*{Adjusted Term GPA for Fourth-Year Students}

Adjusted term GPA was higher for fourth-year students in the first quartile (Q1) of ECTS time allocation compared to students with similar characteristics who were in the third (Q3) or fourth (Q4) quartile.

\author{
Q1 (Treatment) vs. Q2 (Control)
}

\author{
Q1 (Treatment) vs. Q4 (Control)
}

\section*{Sensitivity Analysis: Time Allocation Quartiles 1 and 4}

At what value of the sensitivity parameter could the treatment effect cease to be significant?
\begin{tabular}{lcc}
\hline & \begin{tabular}{c} 
ECTS Model \\
(Q1 vs. Q4)
\end{tabular} & \begin{tabular}{c} 
Carnegie Model \\
(Q1 vs. Q4)
\end{tabular} \\
\hline First-year students & 1.7 & 1.7 \\
Fourth-year students & 2.6 & 3.0 \\
\hline
\end{tabular}

The treatment effect could cease to be significant if:
An unobserved variable caused the odds ratio of treatment assignment to differ between treatment (Q1) and control (Q4) cases-that have the same values on observed covariates-by a factor of 1.7 for first-year students and a factor of 2.6 to 3.0 for fourth-year students.

\section*{Summary of findings}
, Existence of a gap between the amount of time students allocated to academic activities and the amount expected under ECTS and Carnegie standards
, Existence of large variations in time allocation gap amount students:
- ECTS: Mean \(=35.3 \%\); Standard Deviation \(=21.2 \%\)
- Carnegie: Mean = 28.1\%; Standard Deviation \(=23.6 \%\)
, Better academic performance ( \(20 \%\) to \(33 \%\) of a standard deviation) for most diligent students (time allocation gap quartile 1) compared to least diligent students (time allocation gap quartiles 3 and 4), after adjusting for selection bias.

\section*{Further Considerations}
, Time allocated to academic activities does no equal learning (Harris 2002, Shedd 2003)
, However, time remains a key input in the acquisition of knowledge, skills, and human capital (Dolton et al. 2003, Stinebrickner \& Stinebrickner 2008, Babcock \& Marks 2011)
, Important questions that institutions need to address:
* Are students simply investing the minimum amount of time needed to be successful in college? (Kuh et al. 2010)
*Are instructor and program expectations for students of sufficiently high standards? (Babcock \& Marks 2010, McCormick 2011)

\section*{Questions, thoughts, comments?}

Contact information:
Felly Chiteng Kot
Head of Institutional Research and Analytics Office of the Provost, Nazarbayev University
Astana - Kazakhstan
Email: felly.chiteng@nu.edu.kz
Phone: +7 (7172) 706415

\section*{References}

Arum, R., \& Roksa, J. (2011). Academically Adrift: Limited Learning on College Campuses. Chicago: The University of Chicago Press.
Babcock, P., \& Marks, M. (2010). Leisure College, USA: The Decline in Student Study Time. Washington, DC: American Enterprise Institute.
Babcock, P., \& Marks, M. (2011). The falling time cost of college: Evidence from half a century of time use data, The Review of Economics and Statistics 93, 468-478.

Baik, C., Naylor, R., \& Arkoudis, S. (2015). The First Year Experience in Australian Universities: Findings from Two Decades. Melbourne: Center for the Study of Higher Education.

Becker, S. O., \& Caliendo, M. (2007). Sensitivity analysis for average treatment effects, The Stata Journal, 7, 71-83.
Bratti, M., \& Staffolani, S. (2013). Student time allocation and educational production functions, Annals of Economics and Statistics 111/112, 103-140.

Brint, S., \& Cantwell, A., M. (2010). Undergraduate time use and academic outcomes: Results from the University of California Undergraduate Experience, Teachers College Record 112, 2441-2470.

Dolton, P., Marcenaro, O. D., \& Navarro, L. (2003). The effective use of student time: a stochastic frontier production function case study, Economics of Education Review 22, 547-560.

Grave, B. S. (2011). The effect of student time allocation on academic achievement, Education Economics 19, 291-310.
Guo, F. (2014). The Impact of Term-Time Working on College Outcomes in China. New York: Columbia University.
Harris, J. W. (2002). Brief history of American academic credit system: A recipe for incoherence in student learning. https://web.archive.org/web/20051220024122/http://www.samford.edu/groups/quality/

Ho, D. E., Imai, K., King, G., \& Stuart, E. A. (2007). Matching as nonparametric preprocessing for reducing model dependency in parametric causal inference, Political Analysis 15, 199-236.

Ho, D. E., Imai, K., King, G., \& Stuart, E. A. (2011). Matchlt: Nonparametric preprocessing for parametric causal inference, Journal of Statisticall Softwäre 42, 1-28.

\section*{References (Continued)}

James, R., Krause, K.-L., \& Jennings, C. (2010). The First Year Experience in Australian Universities: Findings from 1994 to 2009. Melbourne: Center for the Study of Higher Education.

Kuh, G. D., Kinzie, J., Schuh, J. H., \& Whitt, E. J. (2010). Student Success in College: Creating Conditions that Matter. San Francisco: Jossey-Bass.
Masui, C., Broeckmans, J., Doumen, S., Groenen, A., \& Molenberghs, G. (2014). Do diligent students perform better? Complex relations between student and course characteristics, study time, and academic performance in higher education, Studies in Higher Education 39 621-643.

McCormick, A. C. (2011). It's about time: What to make of reported declines in how much college students study, Liberal Education, 97, 30-39.

Meng, C., \& Heijke, H. (2005). Student Time Allocation, the Learning Environment and the Acquisition of Competencies. Maastricht, The Netherlands: Research Centre for Education and the Labour Market.

Neves, J., \& Hillman, N. (2016). The 2016 Student academic experience survey. York, UK: Higher Education Academy.
R Core Team. (2013). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
Rosenbaum, P. R. (2002). Observational Studies. New York: Springer.
Rosenbaum, P. R., \& Rubin, D. B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score, The American Statistician 39, 33-38.

Ribera, A. K., Rocconi, L. M., \& McCormick, A. C. (2013). Undergraduates in the professional fields: Exploring the impact of institutional characteristics on time spent preparing for class. Paper presented at the American Educational Research Association, San Francisco.

Shedd, J. M. (2003). The History of the student credit hour, New Directions for Higher Education 122, 5-12.
Stinebrickner, R., \& Stinebrickner, T. R. (2008). The causal effect of studying on academic performance, The B.E. Journal of Economic Analysis \& Policy 8, 1-55.```

